일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 타입스크립트
- frontend
- 차원 축소
- ADP 실기
- 최적화
- Kaggle
- docker
- 클러스터링
- React
- TooBigToInnovate
- bigquery
- 심층신경망
- 빅쿼리
- do it
- 리액트
- 쿠버네티스
- 프론트엔드
- 대감집
- 머신러닝
- r
- python
- Machine Learning
- LDA
- 구글
- DBSCAN
- Kubernetes
- 캐글
- 파이썬
- ADP
- 대감집 체험기
- Today
- Total
목록머신러닝 (2)
No Story, No Ecstasy
1. 기초 import pandas as pd import numpy as np from sklearn.model_selection import train_test_split # Read the data X_full = pd.read_csv('../input/train.csv', index_col='Id') X_test_full = pd.read_csv('../input/test.csv', index_col='Id') # Remove rows with missing target, separate target from predictors X_full.dropna(axis=0, subset=['SalePrice'], inplace=True) y = X_full.SalePrice X_full.drop(['Sa..
# Basic Data Exploration import pandas as pd data = pd.read_csv('melb_data.csv') print(data.describe()) print(data.dtypes) print(data.head()) # Selecting Data for Modeling print(data.columns) data = data.dropna(axis=0) X = data.copy() #Selecting the prediction target y = X.pop('Price') #print(y.head()) #Choosing "Features" cand_features = ['Rooms', 'Bathroom', 'Landsize', 'Lattitude', 'Longtitud..